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XX--ray ray Microbeam Microbeam InstrumentsInstruments

lMicrobeam facilities exist in all major 
synchrotrons.

l Used for:
– Metrology,
– Failure analysis,
– Applied Science.

l Provide boundary conditions for formulations.
l Provide test data.
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SPring-8 (Super Photon ring-8 GeV) 

Industrial Consortium 
ID (13 companies)

BL16
XU

Undulator
4.5 -
40
keV

X-ray diffraction, X-ray fluorescence 
analysis and X-ray microbeam
analysis for characterization of new 
industrial materials.

Industrial Consortium 
BM (13 companies)

BL16
B2

Bending 
Magnet

3.5 -
60
keV

XAFS and X-ray topography for 
characterization of new industrial 
materials.

Hyogo
(Hyogo Prefecture)

BL24
XU

Undulator
3.5 -
60
keV

Protein crystal structure analysis. 
Surface/interface analysis of 
inorganic materials. X-ray microbeam
analysis. X-ray imaging.
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ESRFESRF
Øµ-FID-22 :Micro-Fluorescence, Imaging and 

Diffraction,
• Phase-contrast imaging
• Phase-contrast microtomography
• Micro-topography
• Holography and interferometry

Ø ID19 - Topography & Tomography Beamline
ØMicrofocus beamline ID13
ØDiffraction
ØSmall angle x-ray scattering
ØScanning x-ray microfluorescence
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Sector 2: X-ray Microscopy Group
Ø2-ID-D : High-resolution fluorescence and diffraction imaging
Ø2-ID-E: Sub-micron x-ray fluorescence mapping
Ø2-ID-B: High-resolution imaging, coherent scattering.

ØMHATT-CAT-Sector7 /UNICAT  Beamline 34: 
ØGrain by grain  strain/texture mapping.
ØDepth resolved mapping. 

X-ray nanoprobe beamline; Under development.

APS
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ØCHESS

ØB2 bend magnet station,

ØTapered capillary optic, Smallest beam: 1000 A 
diameter @ 6 keV.

Ø106 photons/sec at the sample @ 12.3 keV

ØMicrostructure evaluation (Laue photos).

ØNSLS

ØX20-IBM

ØX13-B Under construction.
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l There are quite exciting machines that are doing
microbeam x-ray analysis.

l This is a hot area:
– ESRF now reports microbeam results as a separate 

category.
l All have advantages and limitations.

– Ease of access,
– Multiple techniques with minimal set-up.

l New rings are being designed with microspot beamlines.
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IBM IBM MicrodiffractionMicrodiffraction programprogram

lWe are currently investigating:
– The basic theory of stress/strain analysis in 

single crystals.
– Diffraction from strained crystallites.
– X-ray information volumes.
– X-ray microbeam metrology.
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Stresses affect device behavior:
- reliability concerns
-performance issues

-Faster devices.

Aspects of controlling strain:
- stresses during fabrication
- feature geometry and density
- interfacial integrity

Modeling of mechanical behavior:
-constitutive equations based on bulk behavior
-edge effects dominate stress / strain evolution
Øexperimental verification is necessary
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Detection of strain by xDetection of strain by x--ray diffractionray diffraction

∆ε

Strain within features

Synchrotron-based x-ray scanning topography:

Ø dynamic to kinematic transition in substrate diffracted intensity

Ø highly sensitive to minute strain gradients in single crystal substrates

Substrate strain near feature edges

Substrate strain under features
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MeasurementsMeasurements

Conducted at APS 2ID-D
§ UHV/CVD 0.24 µm thick Si0.86Ge0.14 on Si (001)
§ 100 µm features etched (various widths)
§ Fresnel zone plate optics, beam size ~ 0.3 µm
§ E = 9.2 keV
§ Map Si (004) and SiGe (004) diffracted intensity

Si

k

θθ SiGe
Sample
motion



T.J. Watson Research Center

0.

0.

0.

Distance from stripe center [µm]

Normalized Si diffracted intensity  [∆I/I0]

Experimental:  1.5 Experimental:  1.5 µµm m SiGeSiGe feature on Si (001)feature on Si (001)

Ø Distortion in Si substrate detected ~ 7 µm away from stripe edge (30 x/t)
ØThe smaller the beam size, the better the resolution. 
ØThe 0.3 micron beam size is very important.
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Comparison of distortion fields in SiComparison of distortion fields in Si
§ Extent of deformation in Si:  7 µm to 30 µm from SiGe feature edge

MID
Distance

normalized
by MID

Decay of magnitude of strain follows characteristic curve:

Ø NOT predicted by traditional mechanical models (analytical, FEM)
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C.E. Murray et al., Appl. Phys. Lett. 83, 4163  (2003)
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Elastic relaxation due to edge effectsElastic relaxation due to edge effects

Measure out-of-plane lattice deformation to determine in-plane stress

- assume σzz = 0, σyy = σ0 (stress in blanket film)

Si substratex
y

z

SiGe

Free surfaces cannot support normal stress  (σxx nx = 0)

σxx(x)

Ø assess the effect of feature width on in-plane normal stress (σxx)
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Mechanical modelingMechanical modeling

Elastic half-space solutions
Ø substrate is semi-infinite

} t
substrate

thin film

Distributed-force model
§ Hu
§ decay in normal stress dictated by

compatibility at interface

σ0

x

σ0 t σ0 t
Edge-force model 
§ Blech and Meieran (based on Love)
§ interaction at film edges
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( ) ( )Kxsinhxt ∝
gggggggggg

ffffffffff

Lap shear
§ Suhir
§ eigenvalue, K = f(Ei, ti)

Mechanical modeling (cont.)Mechanical modeling (cont.)
Finite-thickness formulations
§ elastic load transfer through   

shear across interface
§ film and substrate possess equal widths (w)

substrate

thin film

x

w/2-w/2

( ) [ ](x)u(x)u
t

G
xt subfilm

int

int −







=

DDDDDDDDDD

DDDDDDDDDD
interfacial layer

Shear Lag
§ Chen and Nelson
§ shear is controlled by interfacial

compliance parameter (Gint/tint)

As feature width becomes infinite (w g8 ),
results asymptote to Timoshenko model

ts

tf {
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MeasurementsMeasurements

§ θ / 2θ scans at feature centers
§ Difference in Si (004) and

SiGe (004) peak position
Ø out-of-plane SiGe strain
Ø normal stress at feature center
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Comparison of stress measurements to modelsComparison of stress measurements to models

Ø Elastic relaxation in SiGe features on Si due to edge effects:
- close to Hu and shear lag approximations

ØMore comprehensive models are being developed to incorporate:
- out-of-plane elastic relaxation
- observed strain decay in substrate outside of feature

Si

SiGe
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HighHigh--Resolution Resolution 
MicrodiffractionMicrodiffraction

l Full reciprocal space mapping of single-
crystal reflections.

l Necessary to resolve the epitaxial strain 
effects.

l Requires a parallel beam and analyzer 
crystal.

l Requires some optical advances.
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Optical micrograph.

We observe the
formation of a second peak.

We also observe some Kiessig
fringes.
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Summary and future workSummary and future work

§ X-ray microbeam measurements reveal strain in thin film / substrate systems

§ Extent of strain fields in substrate
- more than 100 times feature thickness away from edge
- not predicted by current mechanical models
Ø dynamic diffraction (H. Yan)

§ Edge effects in thin film features
- elastic relaxation measured in SiGe stripes

§ Mechanical modeling implemented to describe observed behavior
Ø analytical, FEM (S. Polvino)
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Enhanced Si (333) intensityEnhanced Si (333) intensity
§ Line scans of Si (333) vs. position confirm diffracted intensity increase due to strain
§ Effects of Ni dot observed in Si substrate approximately 120 µm away
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Enhanced xEnhanced x--ray diffractionray diffraction

§ Maps of Ni Kα fluorescence and Si (333) diffraction
- effects of strain on dynamic to kinematic transition in Si single crystal substrate

From Noyan et al., APL 74, 2352  (1999)


